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Abstract In all areas of applied optimisation the guestion of how to implement optimal sirategies arises.
This is particularly true for the study of animal behaviour where evolution is untikely to generate the
complex behaviour demanded by the optimal strategy. For anima! behaviour the question of optimal
exploitation of resources in patchy environments has attracied censiderabie attention from biologists,
especially the question of how long an individual should forage in a given paich. In ecological foraging
theory there has been considerable interest in simple behavioural rules, or "rules of thumb”, which lead 1o
behaviour that closely approximates the evolutionary optimum. The relative performance of these rules
will depend on the details of the foraging environment, such as prey resource density. In this paper we
derive rules of thumb for patch leaving behaviowr in different foraging environments from a stochastic
dynamic programming model (SDP). We use a particular biological system: a parasitoid which is an
insect that lays eggs in insect host larvae. Empirical work suggests that simpie rules of thumb such as
feaving a patch after a fixed time period or number of eggs laid do not adequately describe paich leaving
behaviour. Therefore, attempts have been made to derive more sophisticated rules of thumb by statistical
analysis of real behaviour. However, this statistical approach does not explain the underlying functional
mechanism of patch leaving behaviour. An SDP model permits the optimal patch leaving behaviour to
depend on both internal and external states of the parasitoid. We simulate parasitoids whose patch leaving
behaviour is determined by an SDP model, while allowing parasitoids to make mistakes in their
estimation of host density when arriving in a patches. We use proportional hazard models 0 obtain

statistical rules of thumb from the simulated behaviour.

1.} Introduction

Stochastic dynamic programming (SDP, Mangel
and Clark 1988) models arc widely used t find
state dependent optimal sofutions in biology,
such as the foraging behaviour ol animals
(optimal foraging theory or OFT). However, the
results of SDP models are often very complex,
especially when the state space is large, and it is
unlikely that evoletion has implemented such
complex behaviour. Some speculate that the onty
way animals could perform close to optimally is
to use "rules of thumb” fe.g. Weis 1983].
However, the connection between such rules and
optimal solutions is vague. A reliable methoed to
translate complex optimal strategies from an
optimisation procedure into simple rules would
have wide application. In this paper we use
Cox’s proportional hazards model {Cox and

Oakes 1984, Kalbfleisch and Prentice 1990] as a
tool 1o condense the resulls of an SDP model
inio rules that could be easily implemented in
amimal behaviour,

The optimal length of time to exploit a paich of
resources is an important issue in biocontrol,
wildlife management and fishertes fe. g.
Marschall et al 1989, Newman et al. 1988,
Morrison and Lewis 1981]. There have been 3
different general approaches in OFT to predict
when a consumer should leave a patch of prey
resources: simple rules of thumb, optimisation
models, and statistical analysis of empirical
data. Here we provide a brief review of these
approaches.

The best known rules of thumb are: remain until
a fixed number of prey have been consumed
[Gibb 1958, Krebs 19731, remain for a fixed



time period [Gibb 1962], remain until the time
between encounters with individual prey exceeds
a fixed value {Hassel and May 1974, Murdoch
and Oaten 1975]. However, empirical work
suggests that these simple rales do not describe
patch leaving behaviour adequately.

The best known theoretical model of
optimisation of patch residence tmes is
Charnov’s [1976] marginal value theorem. In
this model a forager leaves a patch when the
intake rate drops below the environmental
average. This model ignores that the optimal
patch residence time may depend on internal
states of the forager. Siochastic dynamic
programming {(SDP} models find optimal
solutions that can take the siate of the forager
into account [Mangel and Clark 19881,

Survival analysis such as Cox’s proportional
hazards model is used to stdy the relationship
between survival times and explanatory
variables. The method finds important
applicalions in product life testing and a range
of discipiines from physics to economeirics {Cox
and Oakes 19847, Sarting with Haccoeu and
Hemerik [ 19851 Cox’s proportional hazards
models have been used o analyse the behavionr
of insects, in particular parasitoids [see review
in Godfray 1994). The result is a model of the
probabilily to leave a patch at any given point in
time {leaving tendency) as a function of
covariates such as the density of resources
within the paich. This statstical model of
feaving behaviour could be interpreted as a siate
dependent rule of thumb.

In this paper we combine these three
approaches. First, we construct an 5DP model
that describes the optimal patch leaving
behaviour of the parasitoid wasp Cotesia
rubecula explotting patches containing its host,
the banerlly Pleris rapae. Second, we use a
Monte Carto modet 1o generate sequences of
behavipural decisions by simulated wasps
determined by the optimal sirategy from the
SDP. Third, we analyse the simulated decision
sequences with a proportional hazards model o
generate statistical rules of thumb, The end
result is a state dependent rule of thumb that is
explicitly connected to an optimal foraging
maodel.
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1.2 Model

We assume that parasitoid females adjust their
behaviour to maximise their expected lifetime
reproduction (Ro). In order 1o calculate the
optimal behaviours we use SDP. The model
siarts at the end of an individuals life, then goes
packwards in time and calenlates, for each
combination of stazes, the behaviour that results
in the highest lifetime reproduction.

The state space of the SDP model includes time
1, host density d, number of ovipositions ¢, and
time period in a given paich t,. Time spent
between patches (7} is incorporated by using
negative values for 1. Here we provids a brief
description of the most imporiant parts of the
model.

An adult female wasp ovipoesits a single egg in
its host, the caterpiilar larvae of P, rapae. After
hatching a wasp larva feeds internally on the
host’s tissue and kills the host at the end of
tarval development. The caterpillar larvae Hve
and feed on cabbage plants, and we define a
cabbage plant as a patch. During her life a wasp
flics from palch to patch foraging for hosts. We
assume that wasps have perfect knowledge about
the average density and distribution of hosts in
the environment.

While in a patch wasps arc searching for hosts.
At a given host density the probability to
encounter a host is drawn from a Poisson
distribution. A wasp may encounter hosts at 2
different sizes s with the probability of p, in
which she successfulty oviposits an egg with the
probability s, They cannot distinguish
parasitised from unparasitised hosts, 80 we also
compute the probability that an encountered host
has already been parasitised during the current
visit. Depending on the host size she spends the
time h, 10 handle the host and receives the
fitness payoff o, According to her oviposition
success (= pviposition; Op=no oviposition) the
statc space changes as follows:

0, = Flrsn Jale, +h,fe<1] (1)

Oy = Flt + 1}[d]{zp + 1}9], 03



We ignore the possibility that other wasps could
have visited the patch previousty. Wasps
remember the time since arrival and the number
of ovipositions in that patch.

When the optimal patch residence time is
reached the wasps leave the patch. The
probability 1o encounter another host occupied
patch (A o« ) depends on the density and
distribution of hosts. When a wasp encounters a
patch the probability to land (8,) is an
increasing function of the host deasity in that
particular patch and gquals 1 after 25 minuies.

This scenario is described in the following
dynamic programming eguation:

Bl ditp.ey = max (payoliee., payofla,) (33

payolfi. = (€3]
10 10
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where my and mp are the mortality rates in the
patch and while flying, with m;<mz. Proca, Pisa OF
po are the probabilities to encounter an
unparasitised, parasitised or ne hosg hodtgopa,
hosty.q OF hosty are the corresponding payolfs.
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1.3, Simulation experiment

Empirical results in the literature sugges: that
the patch residence time of parasitoids is
influenced by the host density of a patch and the

number of ovipositions {see Godfray [1994] for
an overview). The simulaiion experiments study
the effects of host density 4 and number of
ovipositions ¢ in a given patch on the tendency
i leave this patch. For this we recorded the
“giving up times” (GUT), which is the period of
time from the last ovipesition until the wasp
leaves. If there i3 no oviposition the GUT is
simply the toial time spent in the patch. To study
the effect of host density we released wasps on
patches of 2,4, §, 8, and 1{} hosts, respectively.
When a wasp arrives in a patch she estimates
the host density of that patch based on the
semiochemical concentration, Her estimate is
drawn from a normal distribution with mean d
and a standard deviation of 2, simulating error
in the estimation of host density.. Without this
added variability the statistical analysis would be
degenerale, because all wasps would behave m
the same way given the same density and
number of ovipositions.

To examine the effect of previpus ovipositions
we allowed the wasps o ovipositn=0,1, .5
times and then we set the probability w0 find
another host equai 1o 0. This way we obtained
GUT for cach density and following -5
ovipositions. This experimental protocol mimics
the empirical work by Hemerik and al. [1993]
on parasitoid leaving tendency.

1.3 Propoertional hazard analysis

We analysed the paich residence time with a
preportional hazard model. It is assumed that
parasitoids have a basic tendency (o perform a
certain behaviour (bascline hazard}, which is
reset after certain renewal points. The observed
hazard rate is assumed Lo be the product of the
baseline hazard and a facior thai gives the joint
effect of a set of covariates z,,....., z,. The
generat form of the model is:

2
©M1,z) = ho(exp [z Bz, (r)) , ©

1=}

where h(t;z) denotes the observed hazard rate,
Ao(1) the baseline hazard, { is the time since the
last renewal point, and B,....., B, are the relative
coniributions of the covariates, The form of Ag(t)
is left unspecified. A1) and By,...., B, are
estimated by means of likelihood maximisation
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(see Haccou and Hemerik [1983], and
Kalbfleisch and Prentice [1990] for further
detatis).

We formulated the model in terms of the leaving
tendency. This is the chance per time unit that a
wasp leaves z patch, given that she is currently
in a patch. We assume thai Ao is reset afier each
oviposition and after each time the paich hag
been left and resntered. In the model we include
the covariates host density o and number of
ovipositions € in the carrent patch, Therefore,
the leaving tendency is:

5
Aty = ?\O{t}exp(ﬁ d+ EE.—@;) (10
=0

where t is the time since the last renewal poing,
¢ refers to 0-5 ovipositions, d represenis the host
density in a given paich and g, 5 are the
corresponding covariates.

We tested the fit of the mode] using martingale
residuals. The proportionality assumption was
tested via stratification, which is dividing the
original sample into subgroups (=slrata)
according 1o the value of the variable d or e,
respectively. The stratification results and the
martingale residuals are illustrated in the
appendix,

1.4 Resuits

The optimal GUT for simulated C. rubecula
increases with host density and decreases with
the number of ovipositions in the current patch
(Figure1l). While the curves representing the
increase in GUT with host dengity for -3
ovipositions are reasonably parallel, host density
has no effect when morc than 4 eggs are laid,
Wasps may lay an egg in an already parasitsed
hast {superparasitism), which may result in
more ovipositions than hosts present such as 3
oviposition ai a host deasily of 3. The risk of
superparasitism decreases with host density. 5
ovipasition occur only at a minimum host
density of 4.

We quantified the influence of host density and
number of gvipositions using Cox’s proporticnal
hazards model. The baseline hazard 1s
llustrated in Figure 2, and the estimates of the
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coefficienis of the covariates in Table 1. Note
that a negative value of fj; indicates a reduced
leaving tendency or increased GUT. The higher
the host density, the lower the probability that a
wasp leaves a patch. When the host density was
3 the leaving iendency was 74% (1.e. expl-
0.296)) of the leaving tendency when the host
density was only 4.

Each oviposition increases the leaving tendency.
However, with each additional oviposition the
effect on the leaving tendency increases. While
the leaving tendency of a female wasp increases
7 times (exp[0.169]) afier she lays her the 2™
egg her leaving lendency increase 20 times
(exp[2.9831) after she lays her 5% egg. Note that
aven small increases in 3, have a big effect in
the leaving tendency.

The fit of the mode! has been verified by plois of
stratified baseline hazards and martingale
residuals (see appendix).
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Figurel: Average GUT as a function of host
density. The numbers on the right hand side of
the curves indicate the number of ovipositions

before leaving the paich.
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Figure 2: Baseline hazard {solid line) and the

corresponding 93% confidence interval {dotted

lines). This is the probability to stay in a patch,
given the paich has not yet been lefi.



Table 1: Estimates of the coefficients of the covariates. (seg text for details )

RN - NESRURUI. " ) NS Y S
Host Density -(.296 0.0109 -27.08 < (.0001
1% Egg 0.169 0.0632 2.67 0.0075
2" Egg 0.694 0.0738 8.39 < 0.0001
3" Eqg 1.659 0.0876 18.93 < 0.0001
4" Egg 2.228 0.1042 21.39 < 0.0001
5" Egg 2.983 0.1785 16.71 < 0.0001

The overall fit of the model s significant (likelihood ratio test, df = 6, p< 0.0001, = 0.424)

1.5 Conclusions

This paper has developed a novel method of
deriving rules of thumb from optimal state
dependent behaviour. We developed an SDP
model of the patch lcaving behaviour of a
parasitoid wasp. Then we condensed the
complex resulls of the SDP into rules of thumb
by analysing the behaviour of simulated wasps,
whose behaviour is determined by the SDP, with
Cox’s proportionat hazards model,

We studied the effect of host density and
oviposition on palch leaving behaviocur.
However, we could easily have included other
factors in the foraging environment, such as the
distribution of resources within and between
patches and travel times between patches, by
extending the vector of the covariates (B, see
4} of the Cox’s proportional hazards model,

The possibility of condensing the resulis of SDP
maodels makes it feasible to incorporate optimal
behaviour of individuals into population models,
This will close the gap between models of
individual behaviour and population models.
Even stmple represeniations of optimal
behaviour can have profound effects on
populiation dynamics [Roitberg and Mangel
1992}, Including optimal behaviour invites
realistic population models tailored to specific
systems. This increases the chances thal the
model will tell us something relevant about that
system. Specific and realistic models will also be
useful as wols for addressing applied questions,
such as in biclogical control [Murdoch and
Briggs 1996].
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1.8 Appendix

The validity of proportonality assumption for
our model including the covariates oviposition
and host deasity is demonstrated in Figures AL
the baseline hazards strazified for each covariaic
are parallel, ie. the lines do not cross each other.
The functional form of proportional hazard
models can be checked with the martingale
residuals. Martingale residuals are different
from standard residuals; the largest possible
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vahe is 1, and outliers are represented by large
negative values. A smooth fif to the Martingale
residuals shouid be horizontal, as shown in
Figure AZ.
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Figure A l: Baseline hazards for the different
oviposition and density strata. The numbers in
the legend indicate the respective number of
ovipositions (upper graph) or host densities
{lower graph)
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Figure A3: Martingale residuals.



